Test Report No.: A-2022-367-01

WOOD TECH SOLUTIONS SRL.

sos. Muncesti 801 2029 Chisinau Republic of Moldova

Kiwa GmbH

Soundlab Aachen Hauptstraße 133 D-52477 Alsdorf

T:+49 (0) 2404 59 696 40 E: DE.Soundlab@kiwa.com

www.kiwa.de

the annex of the certificate D-PL-11217-01-00.

Test Order: Laboratory measurement of the re

Kiwa GmbH, Soundlab Aachen, Hauptstraße 133, D-52477 Alsdorf

Laboratory measurement of the reduction of transmitted impact sound by floor coverings on a reference floor according to DIN EN ISO 10140-1,2,3,4,5:2021-09

Order date: 15.11.2022

Sample description: acoustic underlay

a)

QMF P A 101 a_ R.7_19.12.2022

SONO-Eco

Number of samples: 1

Sampling: by client

Sample receipt: 21.12.2022

Test period: 13.01.2023 - 18.01.2023

Aachen, 24.01.2023

i.V. Prof. Dr.-Ing. Alexander Siebel

Laboratory Manager Test engineer

The test results relate only on the items tested. Without the written approval of the testing laboratory, a duplication in extracts of the test report is not permitted.

1 Product Description

Product Description a) (Construction from top to bottom)

Position	Description	Thickness [mm]	Weight [g/m²]
1	self leveling screed Knauf FE 50 Largo (bonding time 5 days)	~78	~15600
2	PE-film	0,2	-
3	SONO-Eco	12	1500

Remark: Test on a small sample area (~ 1,2 m x 0,8 m).

Illustration / drawing for sample assembly

2 Scope of testing / Annexes

No	Annex	Designation	Standard	Pages general	Pages evaluation
1	TS	Impact Sound Reduction	DIN EN ISO 10140-1,2,3,4,5:2021-09	2	1

General Annex TS for laboratory impact sound tests

1 Test stand description

Test rooms: Laboratory of Kiwa GmbH, Hauptstraße 133, 52477 Alsdorf

Sending room: 4,27 m x 4,45 m x 2,74 m; V = 52,1 m³ (cubic, with diffusers) Receiving room: 3,95 m x 4,08 m x 3,33 m; V = 53,6 m³ (cubic, with diffusers)

Test floor: $4,27 \text{ m x } 4,45 \text{ m}; \text{ S} = 19 \text{ m}^2$

14 cm homogeneous heavyweight concrete slab floor with an area-related mass

of m' ≈ 322 kg/m² (no ceiling below)

Flanking walls: lime sand brick walls with light weighting facing shells (d = 12cm)

with a medium area-related mass of m' ≈ 330 kg/m²

2 Analysis

The impact sound levels generated by the standardized tapping machine are measured in the receiving room below a solid floor without and with the floor covering. From the measured values the reduction of impact sound pressure is calculated as follows:

 $\Delta L = L_{n,0} - L_n \text{ in dB}$

 $L_{n,0}$ = Impact sound level without floor covering in dB

L_n = Impact sound level with floor covering in dB

To determine the weighted impact sound reduction the applicable reference curve is shifted in 1 dB steps into the measured curve so that the sum of the most unfavorable deviations correspondents as close as possible to the value of 32 dB without exceeding this value.

The linear impact sound level ΔL_{lin} you can calculate after the following equation:

$$\Delta L_{lin} = L_{n,r,0,w} + C_{I,r,0} - (L_{n,r,w} + C_{I,r}) = \Delta L_w + C_{I,\Delta}$$

 $L_{n,r,w}$ the calculated weighted norm impact sound level of the cover blanket with the blanket

edition to be checked is.

 $L_{n,r,0,w}$ 78 dB, investigates $L_{n,r,0}$ to 4.3.1 DIN EN ISO 717-2:2021-05.

 $C_{I,r}$ Spectrum customization value. $C_{I,r,0}$ Spectrum customization value.

R3 page 1 of 2

2.1 <u>Test Standards</u>

Standard: (Issue)	Title
DIN EN ISO 10140-1:2021-09	Acoustics — Laboratory measurement of sound insulation of building
	elements — Part 1: Application rules for specific products
DIN EN ISO 10140-2:2021-09	Acoustics — Laboratory measurement of sound insulation of building
	elements — Part 2: Measurement of airborne sound insulation
DIN EN ISO 10140-3:2021-09	Acoustics — Laboratory measurement of sound insulation of building
	elements — Part 3: Measurement of impact sound insulation
DIN EN ISO 10140-4:2021-09	Acoustics — Laboratory measurement of sound insulation of building
	elements — Part 4: Measurement procedures and requirements
DIN EN ISO 10140-5:2021-09	Acoustics — Laboratory measurement of sound insulation of building
	elements — Part 5: Requirements for test facilities and equipment

2.2 **Evaluation Standards**

Standard: (Issue)	Title
DIN EN ISO 717-2:2021-05	Acoustics — Rating of sound insulation in buildings and of building elements — Part 2: Impact sound insulation
DIN EN ISO 12999-1:2021-04	Acoustics — Determination and application of measurement uncertainties in building acoustics — Part 1: Sound insulation
ASTM E989 – 18	Standard Classification for Determination of Single-Number Metrics for Impact Noise
ASTM E2179 - 03(2016)	Standard Test Method for Laboratory Measurement of the Effectiveness of Floor Coverings in Reducing Impact Sound Transmission Through Concrete Floors

3 Note

The results are based on measurements performed under laboratory conditions with artificial excitation (standard procedure). The test results are applicable in due consideration of the national provisions and the local circumstances and/or constructions.

R3 page 2 of 2

Reduction of impact sound pressure level according to DIN EN ISO 10140-1,2,3,4,5:2021-09

Annex TS - ΔL_w

Laboratory measurement of the reduction of transmitted impact sound by floor coverings on a reference floor

Evaluation according DIN EN ISO 717-2-2021-05

Measurement uncertainty according DIN EN ISO 12999-1:2021-04

Date of test:

18.01.2023

Construction:

self leveling screed Knauf FE 50 Largo (78mm, bonding time 5 days)

(from top to bottom)

PE-film

SONO-Eco 12 mm

Test floor:

14 cm concrete slab floor (4,27 m x 4,45 m) with an area-related mass m' \approx 322 kg/m² (no ceiling)

Remarks:

The sample area does not fullfill the requirements for categorie II according ISO 10140.

The Test was performed on just one tapping machine position.

Installation:

Volume:

by the testing institute

Receiving room:

53,6 m³

Sending room: Volume:

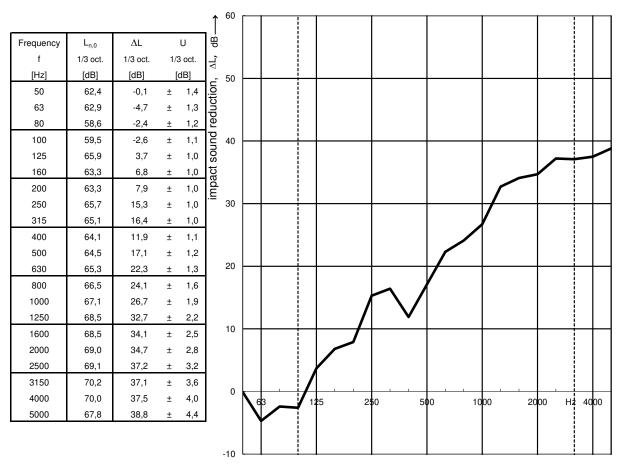
52,1 16.6

Air temperature: Relative air humidity:

m³

°C 54,3 %

Boundary conditions:


Tapping Machine positions: 1 Microphone positions:

Category / sample area: Type of reference floor:

heavyweight reference floor

II / ~1,0 m²

Frequency range for rating according to DIN EN ISO 717-2:2021-05

frequency, f, Hz \longrightarrow

Evaluation according DIN EN ISO 717-2-2021-05

 $dB \quad C_{I,\Delta} \quad = \quad$ 10 $dB \quad C_{l,r} \quad = \quad$ Measurement uncertainty according DIN EN ISO 12999-1:2021-04

 ΔL_{w} = (23,1 \pm 1,1) dB (k = 1, two-sided)

These results are based on a test performed with an artificial source under laboratory conditions (engineering method) with the specified reference floor.

A-2022-367-01 Test report no.:

